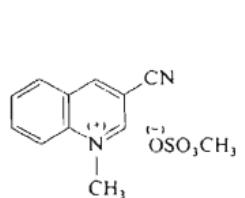
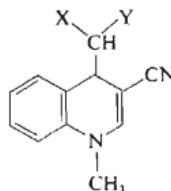


REACTIONS OF 3-CYANO-1-METHYLQUINOLINIUM
METHYL SULPHATE WITH SOME C-ACIDS
AND WITH *p*-NITROANILINE*

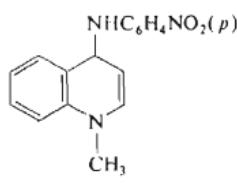

Oldřich KOČIÁN and Miloslav FERLÉS

Department of Organic Chemistry,
Prague Institute of Chemical Technology, 166 28 Prague 6


Received June 27th, 1979

The action of malononitrile, ethyl cyanoacetate, dibenzoylmethane and/or *p*-nitroaniline on compound *I* in the presence of sodium methoxide gives rise to derivatives of 3-cyano-1-methyl-1,4-dihydroquinoline, *II* and *III*.

The positions 2 and 4 of 1-alkylquinolinium salts are electrophilic centres for nucleophilic additions. The possible nucleophilic agents are also anions of some C-acids, such as nitromethane¹, malononitrile² and ethyl cyanoacetate². The formed derivatives of 1,4-dihydroquinoline have substituents at position 4. Attachment of


I

IIa, X, Y = CN

IIb, X = CN, Y = COOC2H5

IIc, X, Y = COC6H5

III

* Part IX of the series Quinoline and Isoquinoline Derivatives; Part VIII: This Journal 46, 262 (1981).

a nitro group to position 3 increases the reactivity of the quinolinium salts and stability of the arising products³.

We were interested in the behaviour of 3-cyano-1-methylquinolinium methyl sulphate toward compounds with an active methylene group, *viz.* malononitrile, ethyl cyanoacetate and dibenzoylmethane on the one hand, and *p*-nitroaniline on the other. The products, formed in the presence of sodium methoxide, were identified by IR and ¹H-NMR spectra as derivatives of 3-cyano-1-methyl-1,4-dihydroquinoline, *II* and *III*. The results show that in the studied reactions the 3-cyanoquinoline derivative *I* behaves in the same way as methiodide of 3-nitroquinoline³.

EXPERIMENTAL

The temperature data are not corrected. The IR spectra were measured with a spectrophotometer Perkin-Elmer 325, ¹H-NMR spectra with an apparatus Varian XL-100-15 (100 MHz), tetramethylsilane being used as internal standard.

Reaction of Compound *I* with C-Acids and/or *p*-Nitroaniline

To a stirred suspension of *I* (1.5 g, 5.4 mmol) and the equivalent amount of a C-acid or *p*-nitroaniline in methanol (70 ml) was added dropwise a solution of sodium methoxide in methanol (5.4 mmol, 15 ml) at room temperature. The mixture was stirred for 1 h and the methanol was distilled off *in vacuo*. The residue was diluted with water and extracted into dichloromethane. The extract was washed with water and dried with MgSO₄. The solvent was removed by distillation and the residue was purified by crystallization.

2-(3-Cyano-1-methyl-1,4-dihydro-4-quinolyl)malononitrile (*IIa*), m.p. 146–147°C (ethanol-acetone), yield 80%. For C₁₄H₁₀N₄ (234.3) calculated: 71.78% C, 4.30% H, 23.92% N; found: 71.68% C, 4.60% H, 24.08% N. IR spectrum (KBr pellet, cm^{−1}): 2200v (CN), 1640v (C=C). ¹H-NMR spectrum (hexadeuteriodimethyl sulphoxide-CDCl₃ 1:1, δ ppm): 3.36 (s, 3 H) NCH₃; 4.52–4.88 (m, 2 H), at 60°C 4.62 (bs, 2 H) CH(CN)₂ and CH(4); 7.02–7.68 (m, 5 H) benzene ring and CH(2).

Ethyl cyano(3-cyano-1-methyl-1,4-dihydro-4-quinolyl)acetate (*IIb*), m.p. 151–152°C (ethyl acetate–ethanol), yield 74%. For C₁₆H₁₅N₃O₂ (281.3) calculated: 68.31% C, 5.37% H, 14.94% N; found: 68.34% C, 5.43% H, 14.89% N. IR spectrum (CHCl₃, cm^{−1}): 2200v (CN), 1745v (C=O). ¹H-NMR spectrum (CDCl₃, δ ppm): 1.29 (t, 3 H, J = 7 Hz) CH₂CH₃; 3.33 (s, 3 H) NCH₃; 4.55 (d, 1 H, J = 5 Hz) CHCNO₂CH₂H₅; 6.93–7.45 (m, 5 H) benzene ring and CH(2).

1,3-Diphenyl-2-(3-cyano-1-methyl-1,4-dihydro-4-quinolyl)-1,3-propanedione (*IIc*), m.p. 174 to 175°C (ethanol-acetone), yield 81%. For C₂₆H₂₀N₂O₂ (392.5) calculated: 79.57% C, 5.14% H 7.14% N; found: 79.61% C, 5.34% H, 6.96% N. IR spectrum (CHCl₃, cm^{−1}): 2210v (CN), 1700 and 1670v (C=O), 1640v (C=C). ¹H-NMR spectrum (CDCl₃, δ ppm): 3.00 (s, 3 H) NCH₃; 5.02 (d, 1 H, J = 5 Hz) CH(4); 5.48 (d, 1 H, J = 5 Hz) CH(COC₆H₅)₂; 6.62–7.90 (m, 15 H) benzene rings and CH(2).

1-Methyl-4-(4-nitroanilino)-1,4-dihydro-3-quinolinecarbonitrile (*III*), m.p. 179–180°C (ethanol-ethyl acetate), yield 73%. For C₁₇H₁₄N₄O₂ (306.3) calculated: 66.66% C, 4.61% H, 18.29% N, found: 66.49% C, 4.84% H, 18.41% N. IR spectrum (KBr pellet, cm^{−1}): 3300v (NH), 2190v (CN); 1645v (C=C), 1595v (NO₂). ¹H-NMR spectrum (trideuteroacetonitrile, δ ppm): 3.28 (s, 3 H)

NCH_3 ; 5.20 (s, 1 H) $\text{CH}(4)$; 6.64 (d, 2 H, $J = 8$ Hz) CH *meta* in respect to NO_2 ; 6.76—7.52 (m, 6 H) benzene ring, $\text{CH}(2)$ and NH ; 7.98 (d, 2 H, $J = 8$ Hz) CH *ortho* in respect to NO_2 .

REFERENCES

1. Leonard N. J., De Walt H. A., Leubner G. W.: *J. Amer. Chem. Soc.* **73**, 3325 (1951).
2. Leonard N. J., Foster R. L.: *J. Amer. Chem. Soc.* **74**, 2110 (1952).
3. Severin T., Bätz D., Lerche H.: *Chem. Ber.* **101**, 2731 (1968).
4. Ferles M., Kocián O.: *This Journal* **44**, 2238 (1979).

Translated by J. Salák.